Use the Divergence Theorem to evaluate S F · dS, where F(x, y, z) = z2xi + y3 3 + sin z j + (x2z + y2)k and S is the top half of the sphere x2 + y2 + z2 = 9. (Hint: Note that S is not a closed surface. First compute integrals over S1 and S2, where S1 is the disk x2 + y2 ≤ 9, oriented downward, and S2 = S1 ∪ S.)


Close off the hemisphere S by attaching to it the disk D of radius 3 centered at the origin in the plane z=0. By the divergence theorem, we have

\displaystyle\iint_{S\cup D}\vec F(x,y,z)\cdot\mathrm d\vec S=\iiint_R\mathrm{div}\vec F(x,y,z)\,\mathrm dV

where R is the interior of the joined surfaces S\cup D.

Compute the divergence of \vec F:

\mathrm{div}\vec F(x,y,z)=\dfrac{\partial(xz^2)}{\partial x}+\dfrac{\partial\left(\frac{y^3}3+\sin z\right)}{\partial y}+\dfrac{\partial(x^2z+y^2)}{\partial k}=z^2+y^2+x^2

Compute the integral of the divergence over R. Easily done by converting to cylindrical or spherical coordinates. I'll do the latter:

\begin{cases}x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi\\y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi\\z(\rho,\theta,\varphi)=\rho\cos\varphi\end{cases}\implies\begin{cases}x^2+y^2+z^2=\rho^2\\\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi\end{cases}

So the volume integral is

\displaystyle\iiint_Rx^2+y^2+z^2\,\mathrm dV=\int_0^{\pi/2}\int_0^{2\pi}\int_0^3\rho^4\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=\frac{486\pi}5

From this we need to subtract the contribution of

\displaystyle\iint_D\vec F(x,y,z)\cdot\mathrm d\vec S

that is, the integral of \vec F over the disk, oriented downward. Since z=0 in D, we have

\vec F(x,y,0)=\dfrac{y^3}3\,\vec\jmath+y^2\,\vec k

Parameterize D by

\vec r(u,v)=u\cos v\,\vec\imath+u\sin v\,\vec\jmath

where 0\le u\le 3 and 0\le v\le2\pi. Take the normal vector to be

\dfrac{\partial\vec r}{\partial v}\times\dfrac{\partial\vec r}{\partial u}=-u\,\vec k

Then taking the dot product of \vec F with the normal vector gives

\vec F(x(u,v),y(u,v),0)\cdot(-u\,\vec k)=-y(u,v)^2u=-u^3\sin^2v

So the contribution of integrating \vec F over D is

\displaystyle\int_0^{2\pi}\int_0^3-u^3\sin^2v\,\mathrm du\,\mathrm dv=-\frac{81\pi}4

and the value of the integral we want is

(integral of divergence of F) - (integral over D) = integral over S

==>  486π/5 - (-81π/4) = 2349π/20


Rate answer
Wrong answer?

If your question is not fully disclosed, then try using the search on the site and find other answers on the subject Mathematics.

Find another answers

Load image